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Abstract. Change detection has always been a crucial task in remote sensing fields, and there have already 
been great efforts made on it for decades. However, as high resolution (HR) remote sensing images generally 
contain abundant ground details, it still faces a huge challenge for their change detection, especially from the 
aspects of change detection accuracy and speed. Concerning this issue, a novel lightweight Siamese deep 
network (LSDNet) is proposed, and it combines Convolution-Involution Module (CIM) and Ensemble 
Coordinate Attention Module (ECAM) for boosting the change detection of HR remote sensing images. CIM 
summarizes the context of ground objects and reweights the importance of different positions, while ECAM 
aggregates multiple levels of semantic features and pays different attention to different spatial information. 
The experiments on CNZ data set have shown that the proposed LSDNet performs better than state-of-the-art 
(SOTA) change detection methods, especially it improves the accuracy by 1.92% and reduces the amount of 
model parameters by 32.89% compared to SNUNet-CD which has the best performance currently. 
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1. Introduction  
Change detection of remote sensing images is the process of identifying differences in the state of a 

ground object by observing it at different times[1], which plays a significant role in effective land 
management, resources survey, and damage assessment. Nowadays, there are many change detection 
methods based on deep neural networks, and they may roughly be divided into two categories, binary change 
detection and multi-type change detection. Binary change detection only aims to identify whether a ground 
object has changed or not, while multi-type change detection needs not only identify the change, but also 
determine the change type, namely, from which land cover type to which land cover type.  

There are different deep networks utilized for change detection. U-Net[2] is a benchmark model for the 
first time. Siamese network is gradually being used and becomes the mainstream for change 
detection[3][4][5][6]. Siamese NestedUNet Concate (SNC)[3], which combinates DenseNet[6] and 
UNet++[7], narrows down the loss of information transmission by densely connected mechanism. Based on 
SNC[3], SNUNet-CD[3] is obtained by introducing channel attention module[8]. DSIFN[9] is composed of 
two sub-networks, one is called difference discrimination and the other is called shared deep feature 
extraction. Besides different networks, a great deal of efforts have been made on deep feature extraction, 
such as multiscale features extracted by pyramid network[10], coordinate attention[11] and so on.  

Although above mentioned methods have achieved relatively good change detection performance, there 
still lies two key issues, down-samplings that bring the loss of accurate spatial position information and a 
large number of parameters that cost much computing power. Inspired by SNC[3] and RedNet[12], a novel 
lightweight Siamese deep network (LSDNet) is proposed, and it aims to tackle the typical two issues 
involving change detection of HR remote sensing images, namely, accuracy and speed.  
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The contributions of the article are mainly as follows: 
 Inspired by convolution unit[13] and involution layer[12], CIM is designed for summarizing the 

context of ground objects and reweighting the importance of different positions in the spatial domain. 
 ECAM is proposed to aggregate multiple levels of semantic features and learn the long-range 

dependencies for improving the overall change detection accuracy. 
 It is the first time that convolution-involution and ensemble coordinate attention are introduced and 

combined for change detection of HR remote sensing images.  
The rest of this paper is organized as follows. Section 2 details the structure of proposed LSDNet. 

Section 3 is the comparative analysis of experiments. Finally, the conclusion is drawn in Section 4. 

2. Network Architecture 
The architecture of LSDNet is shown in Fig.1. Its backbone is a Siamese network with shared weights, 

also called the encoder, and it ultimately has four outputs of the same size which are at different semantic 
levels and spatial positions. The outputs of shallower sub-decoders have more precise localization, while the 
outputs of deeper sub-decoders have richer semantics. Coordinating the outputs of LSDNet can obtain more 
accurate representations.  

 
Fig. 1: The architecture of LSDNet. (a) the proposed backbone. (b) ECAM. 

LSDNet mainly includes Convolution-Involution Module (CIM) and Ensemble Coordinate Attention 
Module (ECAM). Each 𝑋𝑋𝑖𝑖,𝑗𝑗  denotes a CIM and each 𝐶𝐶𝐶𝐶𝐶𝐶  denotes a CAM[6]. Firstly, two-temporal 
images are input into each branch of this Siamese network, respectively. In this way, their features are 
extracted by same convolution filters, which is beneficial for detecting the changed ground objects. Then, the 
feature maps extracted by two branches separately are merged for obtaining the complete information 
accurately. To maintain features of high-resolution remote sensing images, the dense skip connection 
mechanism[6] is introduced into LSDNet, as the doted arrows shown in Fig.1(a), purple doted arrows 
indicate connections between encoders and sub-decoders, and rose gold doted arrows indicate connections 
between sub-decoders and sub-decoders). 

The CIM has a residual unit structure, as shown in Fig. 2(b). It totally includes 6 layers. The first layer is 
2-Dimension convolution layer (Conv2D) which is responsible for adjusting the number of input channels of 
the feature map to match the number of output channels of the feature map. After that, there are a 
BatchNorm (BN) layer and a Rectified Linear Unit (ReLU) activation layer. Then, an involution layer[12] 
and a BN layer are applied. The outputs of Conv2d and the second BN layer will be added and input to the 
last ReLU activation layer.  

Let 𝑥𝑥𝑖𝑖 ,𝑗𝑗 denote the output of 𝑋𝑋𝑖𝑖,𝑗𝑗: 
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𝑥𝑥𝑖𝑖,𝑗𝑗 = �
𝑃𝑃(𝐻𝐻(𝑥𝑥𝑖𝑖−𝑗𝑗,𝑗𝑗)), 𝑗𝑗 = 0

𝐻𝐻([𝑥𝑥𝐴𝐴
𝑖𝑖,0, 𝑥𝑥𝐵𝐵

𝑖𝑖 ,0,𝑈𝑈(𝑥𝑥𝑖𝑖+1,𝑗𝑗−1)]), 𝑗𝑗 = 1
𝐻𝐻([𝑥𝑥𝐴𝐴

𝑖𝑖 ,0, 𝑥𝑥𝐵𝐵
𝑖𝑖 ,0, [𝑥𝑥𝑖𝑖,𝑗𝑗]𝑘𝑘=1

𝑗𝑗−1 ,𝑈𝑈(𝑥𝑥𝑖𝑖+1,𝑗𝑗−1)]), 𝑗𝑗 > 1
                                        (1) 

where 𝐻𝐻(⋅) denotes the operation of a CIM, and 𝑃𝑃(⋅) denotes a 2x2 max pooling operation for 
down-sampling, which is indicated by the downward arrows in Fig. 1(a). 𝑈𝑈(⋅) denotes the up-sampling 
using transpose convolution, which is indicated by the upward arrows. [⋅] denotes that the features are 
concatenated and fused in the channel dimension. If j=0, the encoder will extract features and then 
downsample by max pooling; If j>0, the features in the encoder are directly transmitted to the decoder by the 
dense connected mechanism.  

The involution layer[12] is the key layer of the CIM and can adaptively allocate the weights over 
different positions and prioritize the most informative visual elements in the spatial domain. As shown in Fig. 
2(d), the involution kernel size K equals 3, which is a replacement for a Conv2D with a convolution kernel 
size of 3. The involution kernel is generated by module Φ in Fig. 2(a). After that, a rearrangement “R” is 
implemented from channel dimension to spatial dimension. Then the involution kernel is expanded to C 
dimension on the channel dimension and multiplied by the original K×K spatial neighbourhood. Finally, the 
output features are aggregated within the K×K spatial neighborhood.  

To coordinate channel attention generation and spatial information embedding, CAM[11] encodes both 
long-range dependencies and channel relationships. The structure of CAM[11] is shown in Fig.2(c), “X Avg 
Pool” and “Y Avg Pool” refer to 1D horizontal global pooling and 1D vertical global pooling, respectively. It 
not only reweights the importance of different channels, but also considers encoding the spatial information. 
By disassembling the channel attention into horizontal and vertical parts and inputting these two parts to a 
tensor at the same time for combining them, it can further focus more on the spatial location of the object of 
interest for better detection. ECAM includes five CAMs. Four of them ensemble the four outputs of 
backbone of LSDNet, and the other one is used to further aggregate the outputs of these four CAMs, as 
shown in Fig.1(b). It can be formulated as follows: 

𝑥𝑥′
0,4 = 𝐶𝐶(𝑥𝑥0,4)                                       (2) 

𝑥𝑥′0,3 = 𝐶𝐶(𝑥𝑥′0,4 + 𝑥𝑥0,3)                                 (3) 

𝑥𝑥′0,2 = 𝐶𝐶(𝑥𝑥′0,3 + 𝑥𝑥0,2)                                 (4) 

𝑥𝑥′0,1 = 𝐶𝐶(𝑥𝑥′0,2 + 𝑥𝑥0,1)                                 (5) 

Fig. 2: The architecture of some modules. (a) Module Φ in (d). (b) CIM. (c) CAM[11]. (d) involution layer[12]. 
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𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = [𝑥𝑥′0,1, 𝑥𝑥′0,2, 𝑥𝑥′0,3, 𝑥𝑥′0,4]                            (6) 

𝑌𝑌 = ℎ(𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ⊗ 𝐶𝐶(𝑋𝑋𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐))                             (7) 

where 𝐶𝐶(⋅) denotes a CAM[11], 𝑥𝑥′
𝑖𝑖 ,𝑗𝑗 denotes the output of 𝐶𝐶(⋅), [⋅] denotes the concatenation of 

features in the channel dimension, ⊗ denotes element-wise product, ℎ(⋅) denotes a 1×1 convolution layer 
to generate 𝑍𝑍 × 𝛨𝛨 × 𝑊𝑊 change map 𝑌𝑌 ( “Z” indicates the number of change types ). 

3. Experiments 

3.1. Data Set 
To evaluate the proposed method, a series of experiments are conducted on one bi-temporal high 

resolution (BHR) data set. The data set covers the city of Christchurch, New Zealand, called CNZ data 
set[17]. The image size of the data set is 30k * 30k with RGB three channels. The images are taken on 
February 24, 2011 (called CNZ-1) and April 10, 2014 (called CNZ-2). The ground resolution is 0.3m. It has 
5 unchanged categories and 19 changed categories[18]. Fig.3 shows one pair of images of CNZ data set. 

 
Fig. 3: The data set of (a) CNZ-1[17][18], (b) CNZ-2[17][18]. (c) the ground truth. (d) the mask visualization result. (e) 

the label of different change types. 

To evaluate the performance of the proposed LSDNet, three evaluation indicators are used: overall 
accuracy (OA), model parameters and floating point of operations (FLOPs). The larger OA and the less 
model parameters and FLOPs are, the better prediction result is. OA is expressed as follow: 

𝑂𝑂𝑂𝑂 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
                                                                     (8) 

where, TP, TN, FP, and FN represent the true positive, true negative, false positive, and false negative 
respectively. 

3.2. Implementation Details 
 All experiments are powered by 2×GTX 2080Ti under PyTorch framework. During training, the batch 

size is set to 4, and Adam is applied as an optimizer. The learning rate adjustment strategy is cosine 
annealing with warmup. The warmup stage contains 10 epochs, and the learning rate of each epoch increases 
by 1e-4. The learning rate starts to decrease from 1e-3 to 0 in the annealing stage, which lasts 90 epochs to 
make the network converge. The weights of each convolution layer are initialized by the KaiMing 
normalization. The loss function is cross-entropy loss, which is shown in formulate (9). 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = −
1
𝑁𝑁
��𝑦𝑦𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙( 𝑝𝑝𝑖𝑖𝑖𝑖)

𝐾𝐾

𝑘𝑘=1

𝑁𝑁

𝑖𝑖=1

                                                             (9) 

“N” denotes the number of pixel class; 𝑦𝑦𝑖𝑖𝑖𝑖 indicates the variable. If the category is the same as the 
category of sample “i”, it is 1, otherwise it is 0; 𝑝𝑝𝑖𝑖𝑖𝑖 stands for the probability that the observed sample “i” 
belongs to category “k”. 
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3.3. Comparison and Analysis 

 
Fig. 4: Visualization results: (a) and (b) are original bi-temporal images; (c) the ground truth; (d) the result of DSIFN[9]; 

(e) the result of FC-Siam-conc[4]; (f) the result of FC-Siam-diff[4]; (g) the result of FC-EF[4]; (h) the result of 
SNUNet-CD[3] (8 channels); (i) the result of SNC[3]; (j) the result of LSDNet (without ECAM); (k) the result of 

LSDNet. 

Several change detection methods are selected for comparison. FC-Siam-conc[4], FC-Siam-diff[4], and 
FC-EF[4] are the mainstream methods for change detection. DSIFN[9] is composed of two sub-networks. 
SNC[3] combinates DenseNet[6] and UNet++[7]. SNUNet-CD[3] is obtained by introducing channel 
attention module[8] to SNC[3]. 

As shown in Table 1, LSDNet, which has 0.51 M parameters and 0.38 G FLOPs, achieves the highest 
OA and lowest model parameters. Compared with SNUNet-CD[3], which has the best performance currently, 
LSDNet has improved overall accuracy by 1.92%, and the amount of model parameters has been reduced by 
32.89%, and FLOPs has been reduced by 13.64%. CIM is the main reason for improving overall accuracy 
and reducing the amount of model parameters and FLOPs. Comparing LSDNet (without ECAM) with 
SNC[3], which is the baseline method, CIMs bring 2.15% OA improvement and reduce 0.25 M model 
parameters. Although the ECAM increases FLOPs by 5.6%, the OA has increased by 0.66%. As is shown in 
Fig. 4, comparing “(j)” and “(k)”, it could be found that ECAM can integrate different levels of semantic 
features and greatly capture long-range interactions spatially, which also boosts the performance of change 
detection.  

Table 1: Performance of Comparison on CNZ data set 

Method Params (M) FLOPs (G) Overall Accuracy (%) 
DSIFN[9] 50.44 10.29 78.09 

FC-Siam-conc[4] 1.55 0.69 71.58 
FC-Siam-diff[4] 1.35 0.62 70.05 

FC-EF[4] 1.35 0.47 80.02 
SNUNet-CD[3] 0.76 0.44 83.66 

SNC[3] 0.76 0.44 82.77 
LSDNet (without ECAM) 0.51 0.36 84.92 

LSDNet 0.51 0.38 85.58 

4. Conclusion 
In this letter, a novel lightweight Siamese deep network for HR remote sensing images is proposed, 

called LSDNet. It combines two essential modules for boosting the change detection: CIM and ECAM. CIM 
summarizes the context of ground objects and reweights the importance of different positions, while ECAM 
aggregates multiple levels of semantic features and pays different attention to different spatial information. 
The experiments on CNZ data set have shown that the proposed LSDNet has higher accuracy and speed with 
less parameters comparing to the state-of-the-art (SOTA) change detection methods.   
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